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The paper illustrates the chemometric strategies appropriate for extracting information from
a large amount of biological data regarding the antibiotic activity of 6-aminoquinolones. The
unique framework based on principal component analysis, projection onto latent structures,
and response surface methodologies permits the structure-activity correlations to be shown
and to suggest new compounds for further testing. The low activity of the suggested molecules
points out the limitations of quantitative structure-activity relationship models when the
training set is not properly designed in order to balance all the structural variations taken
into account.

Introduction

Quinolones are a major class of antibacterial agents.
They are still being developed to increase their activity
and broaden their antibacterial spectrum. In two recent
studies directed toward Gram-negative1 and Gram-
positive2 bacterial strains, we showed how computer
chemistry methodologies, namely the chemometric tools
used in quantitative structure-activity relatioships
(QSAR), allowed a rationalization of the structural
features affecting the activity of the existing molecules
with a subsequent suggestion of a new class of poten-
tially active compounds.
The most relevant information obtained from these

studies was that an amino group at C-6, instead of the
the usual fluorine atom, still gives interesting and active
molecules. A subsequent study undertaken on a whole
class of 6-aminoquinolones has shown that these com-
pounds are characterized by a good activity level and a
rather broad antibacterial spectrum.3,4 Because of the
good MIC values of these compounds, we carried out a
QSAR study in order to try to optimize the activity level
on a broad antibacterial spectrum as well as to show a
real example of how chemometric methodologies based
on principal component analysis (PCA), projection onto
latent structures (PLS), and response surface (RS)
analysis allow information to be extracted from a large
set of existing biological data, from which the pharma-
cological properties can be rationalized. The results can
then suggest the subsequent direction which the re-
search should take.

Materials

Molecules. The study was performed on a set of 39
derivatives synthesized and tested by our group. The mol-
ecules considered have a common basic 3-carboxy-6-amino-4-
quinolone or 3-carboxy-6-amino-4-naphtyridone structure with
various arrangements of the functional groups at positions 1,
5, 7, and 8 (Figure 1). The fluoroquinolones, ciprofloxacin and
rufloxacin,5a,b were added for comparative purposes.

Biological Activities. The series of quinolone and naph-
thyridone acids used in this study were tested in vitro against
eight Gram-negative and five Gram-positive bacterial strains
(Table 1). The activity level is estimated in terms of minimum
inhibitory concentration (MIC) in µg/mL which is measured
by the conventional agar dilution procedure.5a According to
this method, the lowest antibiotic concentration able to inhibit
the growth of a well-known quantity of micro-organisms is
measured starting from an initial inhibitor concentration that
is halved at each step. However, it is appropriate that the
actual MIC values are not used as such, but transformed into
a linear numerical scale (between 0 and 13: Table 2) that
corresponds to taking the log2 MIC minus a constant term.
This transformation allows the same importance to be at-
tribute to each concentration halving. If the MIC values are
used as such, the bad values (highest values of MIC) will take
the lead in the resulting models. A log10 MIC transformation
would also equally reduce the leverage of the bad values, but
has no experimental basis.

Methods

Principal Component Analysis (PCA). Principal com-
ponents analysis is a multivariate statistical analysis method6
which permits a table of numbers to be transformed into a
few informative diagrams, thus permitting a simple and
straightforward interpretation of the problem under investiga-
tion. If we have a data matrix with N objects (molecules)
described by P variables (the MICs against the different
bacterial strains), each molecule can be considered as a point
in a P-dimensional space. The main objective of a PC analysis
is to find the lowest dimensionality model which can ad-
equately describe the structure of the multivariate data. The
model obtained can be regarded as a projection of the problem
onto a space of reduced dimensionality. The coordinates of
this space, called principal components are new directions in
the original space which can be described as linear combina-
tions of the original variables.

* Author to whom correspondence should be addressed.
† Istituto di Chimica e Tecnologia del Farmaco.
‡ Laboratorio di Chemiometria, Dipartimento di Chimica.
X Abstract published in Advance ACS Abstracts, April 15, 1997.

Figure 1. General structure of the compounds under inves-
tigation.
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The mathematical expression of a PCAmodel describes each
element xik of the data matrix by the following equation (eq 1)

where i indicates the object (molecule), k indicates the variable
(assay), and A is the total number of principal components “a”
required by the model. The loadings, pak, represent the
coefficients of the variables k in the linear combinations of the
original variables that define each principal component “a”,
while the scores tia represent the position of the projection of
the objects onto these new variables, and eik are the residuals.
Linear PLS Modeling. The purpose of a QSAR study is

to find a statistical model capable of describing the biological
activities (y’s) of a series of molecules in terms of a certain
number of x variables which describe their chemical structures.
The objective of the analysis is to provide a causal relationship
between the Y vector and the X matrix so that the biological
behavior of the already available series of molecules can be
explained and the activity of compounds not yet synthesized
and tested can be predicted. PLS (projection onto latent
structures)7a,b has been shown to be the most appropriate
regression method to derive QSAR models, whereas ordinary
regression methods like multiple linear regression (MLR)
might be misleading because of problems such as multi-
collinearity and fixed dimensionality.8a,b
A PLS model describes the X matrix by a principal compo-

nent-like model (eq 1) and the Y vector as a predictive
relationship with the principal components, here called latent
variables (eq 2, where ba is a proportionality coefficient for each
dimension a), under the constraint of maximizing the correla-
tion between y and t.

The results of a PLS model allow the relative importance
of the structural features affecting the biological activity to
be ranked on the basis of the relative importance of the p
values, the loadings, which describe how much each original
variable, here structural feature, participates in the definition
of the latent variables. All the data analyses were carried out
using the SIMCA method and package.9,10

Nonlinear PLS Modeling. Supposing that the relation-
ship between the y values and the x variables is not linear, a
QSAR problem can be also formulated so that the biological
activity can be expressed as a response surface, which is
mathematically described by a second-degree polynomial
expression that, in the simplest case of two variables, assumes
the form of eq 3.

The coefficients of the polynomial expression can be com-
puted by multiple regression analysis if the experiments have
been chosen according to an experimental design strategy such
that the descriptor variables are independent and define a
rotatable design. However, when variables are not independ-
ent, as happens with structural descriptors because of the
discrete nature of organic molecules and substituents, the
CARSO (computer-aided response surface optimization)11 pro-
cedure allows the coefficients of the response surface to be
computed by using the PLS algorithm.
The procedure is based on a linear PLS model built on an

expanded matrix of descriptors which, besides the linear terms,
also contains the squared terms and the bifactorial interaction
terms of the variables. The loadings of the PLS model are
transformed thereafter into the coefficients of the polynomial
expression by simply setting the mathematical expressions of
the linear and the quadratic model equal. Finally, the
response surface is studied using the canonical and Lagrange
analyses.
The CARSO procedure is particularly useful for formulating

QSAR studies as optimization problems which allows us to find
which substituent for each position considered could lead to a
molecule with a sufficiently high activity. It should be
mentioned that the purpose of the CARSO procedure is not to
find a better description of the available data, but rather is to
detect the interchangeable substituents for each substitution
site.

Results and Discussion

PCA on the Biological Activity Matrix. PCA is
the most appropriate tool for extracting the systematic
information contained in a data matrix. On performing
a PC analysis on the data of Table 3, where molecular
structures are coded according to Tables 4 and 5, we
obtained a three-component model which explains 92%
of the total variance (see Table 6). This means that we
have three independent effects that contribute to the
total variance, while the remaining 8% is due to the
“noise” of the data. The number of significant compo-
nents was assessed by the criteria embedded in SIMCA,
i.e. in terms of model predictivity (Q2 being 0.88 for A
) 3 with no further increase).
The first component explains 78% of the total vari-

ance, and all the variables have almost the same
contribution (all the loadings of Table 6 are positive and
quite similar). This component is related to the anti-
biotic potency against the bacterial strains. Since all
the considered molecules are active against all the

Table 1. Selected Bacterial Strains

Gram-negative organisms Gram-positive organisms

(1) Escherichia coli ATCC 8739 (9) Staphylococcus aureusMPR 5
(2) Escherichia coli ISF 432 (10) Staphylococcus aureus ATCC 6538
(3) Enterobacter cloacae OMNFI 174 (11) Staphylococcus epidermidis HCF Berset C
(4) Acinetobacter calcoloaceticus OSMPV 113 (12) Staphylococcus epidermidis CPHL A2
(5) Providencia stuardii CNUR 5 (13) Streptococcus faecalis LEP Br
(6) Klebsiella pneumoniae ATCC 10031
(7) Shigella enteritidis
(8) Pseudomonas aeruginosa ATCC 9027

Table 2. MIC Values and Their Transformations into (log2
MIC + C) and Desirability Values

MIC (µg/mL) log2 MIC desirability

128 0 0
64 1 0
32 2 0
16 3 0
8 4 0.1
4 5 0.2
2 6 0.3
1 7 0.4
0.5 8 0.5
0.25 9 0.6
0.12 10 0.7
0.06 11 0.8
0.03 12 0.9
0.01 13 1

xik ) xjk + ∑
a)1

A

tiapak + eik (1)

yi ) yj + ∑
a)1

A

batia + fi (2)

y ) b0 + b1x1 + b2x2 + b11x1
2 + b22x2

2 + b12x1x2 (3)
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bacterial strains, the first component ranks molecules
according to potency and is not informative about the
real differences between molecules and/or micro-organ-
isms.
The second component explains a further 9% of the

total variance. In this case different groups of variables
contribute in different ways in determining the compo-
nent, as seen from the second column of Table 6 and
from the loading plot (Figure 2) of the first versus the
second component. The latter shows that there is a
marked separation between Gram-positive (upper part

of the plot) and Gram-negative (lower part) bacterial
strains.
It should be noted that variable 5 (P. stuardii) is in

the middle of the plot and therefore provides little
information. Moreover, variable 4 (A. calcoloaceticus),
which represents the activity of a Gram-negative bacte-
rial strain, has the same behavior as the other Gram-
positive bacterial strains considered. We suggest that
this strain may not be well classified.
The corresponding score plot of the first versus the

second component (Figure 3) shows that the molecules
are ordered in a very informative way: (a) the antibiotic
activity against the considered micro-organisms in-
creases from left to right; (b) molecules that are prefer-
ably active against the Gram-positive bacterial strains
are found in the upper part of the plot, while those
preferably active against the Gram-negative ones are
in the lower part.
For an easier graphic interpretation of the chemo-

metric results, molecules have been coded by a number
and a letter; the number indicates the subclass of
molecules according to Table 4, while the letter indicates
the side chain sitting at the C-7 position as reported in
Table 5. Using these codes we can easily rationalize

Table 3. In Vitro Antibacterial Activity (log2 MIC)a.

variables

objects 1
E. co.

2
E. co.

3
E. cl.

4
A. ca.

5
P. st.

6
K. pn.

7
S. en.

8
P. ae.

9
S. au.

10
S. au.

11
S. ep.

12
S. ep.

13
S. fe.

1 00 6 6 3 0 1 6 3 0 0 0 1 0 0
2 1a 9 12 9 5 4 12 9 5 6 6 5 6 2
3 1b 9 12 9 3 2 9 8 6 1 1 3 3 0
4 1c 12 12 9 3 3 12 9 6 3 3 5 5 2
5 1d 12 12 8 4 5 12 9 6 4 4 5 6 2
6 1e 5 6 6 1 1 6 6 2 1 1 1 1 1
7 1f 8 8 6 2 0 8 6 2 0 0 2 1 0
8 1g 12 12 8 7 7 12 8 6 8 8 6 7 4
9 1h 12 12 6 6 4 12 6 4 5 5 5 6 4
10 1i 9 9 4 0 0 9 3 0 0 0 0 0 0
11 1j 5 5 0 0 0 5 0 0 0 0 0 0 0
12 1k 7 8 3 0 0 7 3 3 0 0 0 0 0
13 1l 8 7 3 0 0 8 2 0 0 1 1 1 0
14 1m 6 5 1 0 0 6 1 0 0 0 0 0 0
15 1n 7 7 0 0 0 6 0 0 0 0 0 0 0
16 2a 11 11 7 5 5 11 7 5 6 6 5 6 2
17 2g 11 12 6 8 5 12 6 5 9 9 8 8 4
18 2i 10 10 3 3 1 10 2 1 4 5 4 4 0
19 2o 10 10 4 4 5 10 4 2 6 6 5 5 1
20 2p 10 10 4 6 5 10 4 2 8 9 7 8 4
21 2q 8 8 1 7 0 9 1 0 7 7 6 7 3
22 3a 10 10 5 3 5 10 5 4 5 4 4 4 1
23 3g 11 12 5 5 5 12 5 0 7 8 5 5 0
24 4a 10 12 10 5 6 12 10 6 5 5 5 5 0
25 5a 7 11 9 4 5 11 8 6 5 5 4 5 1
26 5g 10 11 7 7 8 12 5 5 9 8 7 8 5
27 6a 9 13 9 8 8 13 8 4 6 6 6 6 4
28 7a 3 3 0 0 0 2 0 0 0 0 0 0 0
29 8a 12 12 10 6 6 12 9 5 6 6 5 5 5
30 Cb 12 13 13 11 11 12 12 11 10 10 10 11 8
31 9a 12 12 10 - 6 12 11 6 8 8 7 7 5
32 9g 9 12 9 10c 6 12.5 10 7 11 11 10 10 8
33 9c 10 12 10 6c 6 12 11 7 7 7 7 7 5
34 9i 2 7 1 3c 1 8 1 0 5 5 3 3 1
35 9o 13 13 9 - 11 11 9 8 13 13 12 13 9
36 9r 12 12 10 - 8 12 10 7 10 10 10 9 7
37 9h 7 12 8 10c 7 12 9 6 10 11 11 11 8
38 9j 10c 10c 5c 5c 2c 9c 5c 3c 3c 3c 3c 3c 1c
39 9d 11 12 8 6c 6 12 9 6 7 7 6 7 3
40 9b 12 12 11 6c 6 12 12 7 5 6 4 5 3
41 Cb 13 13 13 10 11 13 13 11 11 11 11 11 8
42 Rb 9 9 8 7 6 9 10 5 8 8 7 8 5
a See refs 3 and 4 unless otherwise stated. b C (ciprofloxacin) and R (rufloxacin) are the reference compounds. Molecules 30 and 41 are

different measurements of biological activity for the same compound. c Unpublished data.

Table 4. Subclasses of the Molecules Considered

substituents

code R1 R5 R7 X

class 0 c-Pr H Cl CH
class 1 c-Pr H heterocycle CH
class 2 t-Bu H heterocycle CH
class 3 4-FC6H4 H heterocycle CH
class 4 c-Pr H heterocycle N
class 5 c-Pr H heterocycle CF
class 6 c-Pr NH2 heterocycle N
class 7 c-Pr NH2 heterocycle CH
class 8 c-Pr NH2 heterocycle CF
class 9 c-Pr H heterocycle C-CH3
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the effects of different structural variations on the
antibacterial activity. Compounds with a methyl group
in the C-8 position (class 9) generally show a higher
activity (Figure 4); in contrast, molecules with a hydro-
gen in the C-8 position (class 1) have a much lower
antibacterial potency.
Similarly, when heterocycles like “o” (2-isoindolinyl),

“p” (1,2,3,4-tethrahydro-1-isoquinolinyl), “q” (4-(2-pip-
eridyl)-1-piperazinyl), or “g” (1-thiomorpholinyl) are in
the C-7 position, the corresponding molecules have a
higher activity level against Gram-positive bacterial
strains (Figure 5). With substituents like “a” (1-methyl-
1-piperazinyl), “b” (1-piperazinyl), “e” (3-metyl-1-piper-
azinyl), or “d” (3,5-dimethyl-1-piperazinyl), the com-
pounds are mainly active against the Gram-negative
ones. This interesting result can be attributed to
different interactions of the substituents with Gram-
positive and Gram-negative bacterial cell walls.

Finally, the third component explains a further 5%
of the total variance. In spite of the low fraction of
explained variance, the loading plot of the second versus
the third component is quite informative (Figure 6). In
fact, it allows three different groups of micro-organisms
to be recognized that behave similarly when treated
with the same antibiotics. The first group contains
variables 1, 2, and 6 (two E. coli and K. pneumoniae
bacterial strains): these Gram-negative bacterial strains

Table 5. Heterocyclic Side Chains Employed as R7 Substituent
and Relative Codes

Table 6. Loadings of the Principal Component Analysisa

PCA Loadings

variables PC1 (p1) PC2 (p2) PC3 (p3)

var 1 (E. coli) +0.23 -0.32 -0.50
var 2 (E. coli) +0.28 -0.27 -0.32
var 3 (E. cloacae) +0.26 -0.38 +0.31
var 4 (A. calcoloaceticus) +0.30 +0.23 +0.00
var 5 (P. stuardii) +0.29 +0.02 +0.11
var 6 (K. pneumoniae) +0.27 -0.21 -0.40
var 7 (S. enteritidis) +0.26 -0.35 +0.35
var 8 (P. aeruginosa) +0.27 -0.24 +0.40
var 9 (S. aureus) +0.28 +0.31 -0.10
var 10 (S. aureus) +0.28 +0.32 -0.13
var 11 (S. epidermidis) +0.29 +0.24 +0.00
var 12 (S. epidermidis) +0.29 +0.24 -0.03
var 13 (S. faecalis) +0.27 +0.28 +0.27

explained variance 78% 9% 5%
cumulative variance 78% 87% 92%
a The + and - signs indicate the way each variable participates

in each principal component.

Figure 2. PCA loading plot of the first versus the second
component. The numbers correspond to the bacterial strains.

Figure 3. PCA score plot of the first versus the second
component. The numbers correspond to the molecules.

Figure 4. PCA score plot of the first versus the second
component with the codes that indicate the subclass of
molecules according to Table 4.
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are quite easy to inhibit. The second group is formed
by the variables 3 (E. cloacae), 7 (S. enteriditis), and 8
(P. aeruginosa). These variables correspond to high
MIC values. These three Gram-negative bacterial
strains are therefore not easy to inhibit. The third
group contains all the Gram-positive bacterial strains
(variables from 9 to 13) and A. calcoloaceticus (variable
4). As already stated, the latter shows the same
behavior as the group of Gram-positive bacterial strains,
in spite of being known as Gram-negative. The plot also
confirms that variable 5 (P. stuardii) does not fit the
systematic information provided by other micro-organ-
isms. It is as if it identifies a new group of bacterial
strains.
Transformation of Responses into Desirability

Functions. The objective of the second part of this
work was to identify the structural features of quinolone
derivatives that affect the antibacterial activity against
all three groups of bacterial strains found by the
previous PCA. On choosing just one bacterial strain as
representative for each group, we can sum up the
information using only three variables. On the basis
of their diffusion and reliability, we have chosen E. coli
(variable 1), P. aeruginosa (variable 8), and S. aureus
(variable 10). This reduction of the variables does not
significantly decrease the overall information because
of the redundancy contained within each group of

variables (Figure 6). Consequently, we need to consider
three responses simultaneously in order to find the best
compromise between them. In fact, our final aim is to
rationalize the structural features that would increase
the antibacterial activity against all types of bacterial
strains.
With several responses it is possible to use the PLS2

algorithm, which would find the correlations between
them, but is not aimed at finding the best compromise.
To do this, an external evaluation of the goodness of
these responses, referred to as expectations, is intro-
duced by means of the application of desirability func-
tions.12 In fact, if the responses change in different or
independent ways (e.g. potency and toxicity of a drug),
a simple PLS analysis does not provide information
about their best compromise.
A desirability function is a transformation function

which permits a response to be modified in order to take
into account its goodness. This function is defined as a
dimensionless scale between zero and one. Zero is
assigned to a response value which is not considered to
be good enough for the expected property of the mol-
ecule, while one is attributed to a response value above
which it is of little use to increase further the property.
Assigning the values zero and one is therefore a subjec-
tive choice that should be based on the level of under-
standing the problem. The intermediate values between
zero and one are obtained by means of the transforma-
tion function which can assume different shapes (linear,
exponential, ...).
The desirability values for our antibacterial responses

are reported in the last column of Table 2. In other
words, when the MIC value is greater than 16 µg/mL,
we assume that the compound is not interesting enough
and we set the response equal to zero. On the contrary,
when the MIC is smaller than 0.01 µg/mL, the com-
pound has such a good potency that to increase it
further would be irrelevant and we can set the response
equal to one. All intermediate values correspond to a
linear transformation from the minimum to the maxi-
mum value. The transformation of real biological data
into desirability functions is particularly appropriate
because it is possible to define a total desirability
function as the geometric mean of the individual ones
which represents in a suitable way the compromise
between the different individual responses (eq 4).

In fact, the total desirability also changes from zero
to one; it is high only when all the individual functions
are high and it is low or even goes to zero when just
one of the functions is low or zero. By using the total
desirability function, all the dependent variables can be
summarized in one response only.
Structural Description of Quinolones. To de-

scribe the structure of the quinolone derivatives, a
conventional QSAR procedure was used following the
tradition developed by Hansch.13 In fact, only the
substituents sitting at different positions are described;
the common quinolone basic structure is not taken into
account.
The choice of the traditional descriptors to be used is

always a subjective one. Although PLS is appropriate
for handling a large number of descriptors, it is useless
to do so when the number of varying substituents is low

Figure 5. PCA score plot of the first versus the second
component with the codes that indicate the side chain at
position 7 according to Table 5.

Figure 6. PCA loading plot of the second versus the third
component. The numbers correspond to the bacterial strains.

Dtot ) (d1d2...dn)
1/n (4)
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at a certain site. Accordingly, we decided to consider
one single descriptor for positions 1 and 5, and focused
our attention to positions 7 and 8, where the structural
variation is larger.
On the basis of results obtained in previous work1 the

R1 substituents were described by means their molar
refractivity (MR) values while the R5 substituents were
described by their σp constants which reflect their
inductive and resonance electronic effects. The R7
substitution site was described by a series of six
topological descriptors already used in previous works.1,2
They report the main characteristics of the considered
heterocyclic chain substituents: (1) molecular weight,
(2) number of aliphaticN atoms, (3) number of aromatic
N atoms, (4) number of heteroatoms different from N,
(5) number of terms of the ring directly linked to the
skeleton, and (6) number of NH2 or OH groups. For the
R8 substituents, the two first principal properties of
organic substituents14 were used, namely t1 for the steric
effect and t2 for the electronic effect, which serve as
statistical descriptors.
The QSAR table is reported in Table 7, where in order

to obtain a more balanced series of compounds, the
following were excluded: the reference compounds, the
only molecule belonging to class zero and those mol-
ecules bearing the substituents “j”, “m”, and “n” at C-7,
because they induce low activity and because these
substituents could not be parameterized by the six
indices chosen in a congruent way. The resulting data

matrix therefore contains 34 molecules (the objects), one
dependent variable (the total desirability), and 10
descriptor variables, where the substitution sites R1 and
R5 are described by one parameter, R7 by six param-
eters, and R8 by two parameters. In order to give each
substitution site the same initial importance for the PLS
analysis, the data matrix was modified by a block
scaling, i.e. multiplying each variable by a correction
term 1/SDxn where n is the total number of descrip-
tors that characterize the considered substitution site,
while SD is the standard deviation of the variable.
Linear PLS Analysis. The linear PLS analysis of

this matrix gives a two-principal-component model
which explains 55% of the total variance of y (Dtot). In
detail the first component explains 42% of the variance
and is mainly a combination of MR for the R1 substitu-
ent and t1 for the R8 substituent. The second component
explains a further 13% of the total variance and depends
almost entirely upon the MR parameter for the sub-
stituent in R1.
The score plot of Figure 7 shows, however, that the

data set is not homogeneous; in fact, inactive compounds
(Dtot ) 0) cannot be modeled together with active ones.
This situation is well-known in QSAR as the “asym-
metric case”.15 Since loss of activity can be due to the
lack of any of the key structural features, there is no
reason to expect that inactive compounds can be mod-
eled at all, while for the active molecules, the activity

Table 7. Data Matrix for Linear PLS Analysisa

variables

objects 1
MRb

2
σpc

3
MWd

4
N ald

5
N ard

6
Ht * Nd

7
ring atd

8
NH2 OHd

9
t1e

10
t2e

11
Dtot

f

1 1a 13.53 0 99 2 0 0 6 0 0 0 0.33
2 1b 13.53 0 85 2 0 0 6 0 0 0 0
3 1c 13.53 0 99 2 0 0 6 0 0 0 0
4 1d 13.53 0 113 2 0 0 6 0 0 0 0.3
5 1e 13.53 0 124 3 0 0 6 0 0 0 0
6 1f 13.53 0 128 3 0 0 6 1 0 0 0
7 1g 13.53 0 102 1 0 1 6 0 0 0 0.51
8 1h 13.53 0 100 1 0 0 6 1 0 0 0.26
9 1i 13.53 0 70 1 0 0 5 0 0 0 0
10 1k 13.53 0 85 2 0 0 5 0 0 0 0
11 1l 13.53 0 88 1 0 1 5 0 0 0 0
12 2a 19.62 0 99 2 0 0 6 0 0 0 0.36
13 2g 19.62 0 102 1 0 1 6 0 0 0 0.46
14 2i 19.62 0 70 1 0 0 5 0 0 0 0
15 2o 19.62 0 118 1 0 0 5 0 0 0 0
16 2p 19.62 0 132 1 0 0 6 0 0 0 0
17 2q 19.62 0 162 2 1 0 6 0 0 0 0
18 3a 25.36 0 99 2 0 0 6 0 0 0 0.19
19 3g 25.36 0 102 1 0 1 6 0 0 0 0
20 4a 13.53 0 99 2 0 0 6 0 0 -3.14 0.35
21 5a 13.53 0 99 2 0 0 6 0 0.39 -1.01 0.29
22 5g 13.53 0 102 1 0 1 6 0 0.39 -1.01 0.41
23 6a 13.53 -0.66 99 2 0 0 6 0 0 -3.14 0.26
24 7a 13.53 -0.66 99 2 0 0 6 0 0 0 0
25 8a 13.53 -0.66 99 2 0 0 6 0 0.39 -1.01 0.38
26 9a 13.53 0 99 2 0 0 6 0 1.22 -0.21 0.51
27 9g 13.53 0 102 1 0 1 6 0 1.22 -0.21 0.58
28 9c 13.53 0 99 2 0 0 6 0 1.22 -0.21 0.48
29 9i 13.53 0 70 1 0 0 5 0 1.22 -0.21 0
30 9o 13.53 0 118 1 0 0 5 0 1.22 -0.21 0.79
31 9r 13.53 0 86 1 0 1 6 0 1.22 -0.21 0.63
32 9h 13.53 0 100 1 0 0 6 1 1.22 -0.21 0.46
33 9d 13.53 0 113 2 0 0 6 0 1.22 -0.21 0.46
34 9b 13.53 0 85 2 0 0 6 0 1.22 -0.21 0.48
a The bold objects are the active molecules used for the final PLS analysis (Y > 0). The topological descriptors are as follows: MW,

molecular weight; N al, number of aliphatic N atoms; N ar, number of aromatic N atoms; Ht * N, number of heteroatoms different from
N; ring at, number of terms of the ring directly linked to the skeleton; NH2 OH, number of NH2 or OH groups. b R1. c R5. d R7 (topological
descriptors). e R8. f Y.
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variation parallels well-defined structural modifications.
Although the exclusion of inactive compounds is a
problem formulation requirement, it can be easily
checked that they do not belong to the confidence space
around the PLS model of the active ones in the descrip-
tor space.
Therefore, the PLS analysis was repeated after ex-

cluding the 14 inactive molecules. We also excluded the
two active molecules which bear an NH2 group at C-5,
because these would produce a skewed distribution of
that descriptor, and therefore its apparent importance
would be inflated. Consequently, the calculations were
performed on a data matrix consisting of 18 objects, 10
descriptor variables, and one dependent variable. The
new analysis also gives a two-component model, quite
similar to the previous one, where the first latent
variable explains 60% of the total variance and is a
combination of MR for the R1 substituent and t1 for the
R8 substituent. The second latent variable explains a
further 22% of the total variation of y and mainly
contains the parameter MR for the R1 substituent. The
interpretation is therefore the same, even though almost
half of the molecules were excluded and the model is
much better from a numerical point of view.
It may be appropriate to observe that the variance

explained by the PLS model cannot be compared with
that explained by the previous PCA model, since the
former refers to the Dtot vector and the latter to the raw
data matrix of biological activities.
The PLS score plot is shown in Figure 8 with the

codes for the nuclear substituents and in Figure 9 with

the codes for the chain in the C-7 position. It is clear
that molecules with a methyl group at C-8 (class 9) have
by far the best activity and the broadest antibacterial
spectrum, while the situation is not as clear for the R7
and R1 substituents.
Response Surface Study. Besides the information

gained from linear PLS modeling, the QSAR problem
can also be formulated as an optimization problem by
means of a response surface study. In fact, response
surfaces obtained by the CARSO procedure enable a
data set to be rationalized in terms of nonlinear QSARs
and allows the ranges of the most active molecular
structures to be identified.
CARSO requires a reduced number of descriptors to

be chosen according to the information coming from the
linear PLS analysis. Accordingly, the descriptor vari-
ables 1 (MR for the R1 substituent), 9 (t1 for the R8
substituent), and 3 (MW for the R7 substituent) were
chosen. The CARSO procedure works thereafter by
expanding the descriptor matrix and building a new
data matrix containing nine explanatory variables (x1,
x2, x3, x12, x22, x32, x1x2 , x1x3 , x2x3) and the dependent
variable (Dtot).
The linear PLS analysis of the expanded matrix gives

a three-component model that can be transformed,
according to the described CARSO procedure, into a
quadratic polynomial that represents the response
surface.
The R2 value of the PLS model on the expanded

matrix is 0.65, but this relatively low value is not
surprising since CARSO is not aimed at finding a better
fit. This may be obtained by different techniques, e.g.
polynomial fitting. On the contrary, CARSO, as stated
in the last paragraph of the Methods section, uses an
“a priori” chosen quadric equation in order to find the
ranges of the descriptor variables between which the
value assumed by the biological response within the
experimental domain remains above a certain level. The
response surface can be analytically studied by means
of canonical analysis that allows the only existing
stationary point (maximum or minimum or saddle point)
within the domain to be found. In the CARSO proce-
dure, when the response surface is not “bell-shaped”,
the search for the constrained maximum within the
experimental domain is made by means of the Lagrange
analysis and seeks the values assumed by the response
at the extreme points located at the borders of the
domain. Our data set gave a saddle point (see Figure

Figure 7. PLS score plot. All the objects on the bottom have
Dtot ) 0. The numbers correspond to the molecules.

Figure 8. PLS score plot with the codes of Table 4.

Figure 9. PLS score plot with the codes of Table 5.
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10) and the resulting ranges for the best extreme point,
corresponding to a y value of Dtot ) 0.79, are reported
in Table 8.
These ranges are referred to as structural descriptors

and can be used to design new candidates to be
synthesized and tested. In fact, the chemical informa-
tion contained in the response surface model indicates
that a cyclopropyl group is optimal in N-1 position, but
other branched alkyl groups could also be good, and the
groups containing two fused rings seem to be the most
suitable at C-7. In fact, in the range for the R7 only
tetrahydroisoquinoline is found.
Unfortunately, the derived information for the R8 is

not so clear. The methyl group is a really good one, but
this is just a qualitative and not a quantitative result.
In fact, because of the poorly designed training set,
which gathered the historical data produced by our
group over a number of years, information is lacking
about the activity of molecules with a larger group.
Molecules with a methyl group are the best ones, and
the methyl group is the largest substituent used in this
position. Consequently, the model (Table 8) indicates
an open range, and a larger substituent should provide
a further increase of the antibacterial activity. How-
ever, we are aware that there should be a size limit for
the R8 substituent, after which it becomes too large to
be accommodated into the receptor site. It is not known
whether this limit has already been reached by the
methyl group or if a larger group can be allocated.
Testing the Suggested Compounds. According to

the interpretation of the quadratic model discussed in
the previous section, we decided to synthesize and test
the most promising structures, i.e. those bearing a
larger substituent at C-8. Consequently, the molecules
with an ethyl group and a methoxy group sitting at C-8
were prepared. For the former tetrahydroisoquinoline
was the C-7 substituent, while for the latter, the C-7
group wasN-methylpiperazine. For both molecules the
N-1 substituents was cyclopropyl.
Although details of the syntheses and biological

activities will be reported elsewhere,16 none of the
compounds exhibited an improved activity. On the

contrary, while the methoxy derivative was only slightly
less active than the 8-methyl congener, the activity of
the 8-ethyl derivative against both Gram-positive and
Gram-negative microorganisms dropped significantly.
The results show that the maximum volume allowed

for the substituent at C-8 is sufficient to accept the
methyl group, but not large enough to allocate even
slightly larger substituents.

Conclusions

We were prompted to publish our work because of the
appearance of the recent paper by Llorente et al.,17
which is somewhat related to our study. This paper is
based on “3D-QSAR” models derived by the APEX
program,18 which, even if some of the parameters used
to describe molecules are intrinsically three-dimen-
sional, is not a true 3D-QSAR tool, since it does not work
on fields or energies derived at the nodes of a three-
dimensional grid.
The main drawback is that APEX uses multivariate

linear regression analysis (MLR) as the chemometric
tool: Llorente at al. have a set of 15 structural descrip-
tors, and under these conditions, because of the un-
avoidable multicollinearity, MLR is inappropriate, giv-
ing misleading results, and should be replaced by PLS.
However, since the APEX program does not rely on
appropriate cross-validation criteria,8b,19 the derived
models are apparently good, even when they are, in fact,
nonpredictive. We are convinced that the Palumbo
model20 is preferable to the Shen model21 for explaining
the action of quinolones, but this support is based on
the reasons expressed in the original paper, and not
because of the apparent support given by Llorente et
al.
The chemometric guidelines in the present work

appear to be more reliable and show that, by properly
applying chemometric strategies and tools, information
can be extracted from a large amount of biological data,
the existing data can be interpreted, and new structures
designed. In other words, relatively simple, but care-
fully thought out, statistical analysis of a set of biological
data can yield a wealth of information.22

Moreover, the current paper illustrates the value of
graphical representation of statistical data as the rela-
tive activities, Gram-negative or Gram-positive speci-
ficities, and structural feature information has been
combined into a set of graphical scatter plots of the data,
yielding valuable information which might possibly have
been missed without such a representation.22

In particular PCA has shown the redundancy of the
available information (three groups of strains) and helps
to indicate which structural feature affects each type
of strain the most, while PLS permits the best compro-
mise between the available activities to be described
(expressed as total desirability) in terms of traditional,
statistical, or topological descriptors.
Finally, the results of a RS study can be used to

estimate the ranges within which it is possible to vary
substituents at each site and indicate possible guidelines
for hopefully increasing the overall activity. The fact
that the activities of the suggested molecules were lower
than those predicted, even though disappointing, should
not raise doubts about the value of the chemometric
approach or about the suitability of structural descrip-
tors. On the contrary, it is reasonable the failure is

Figure 10. Three-dimensional response surface obtained by
CARSO procedure.

Table 8. Results of the CARSO Analysis

10.9 < X1 MR (R1) < 17.0
132 < X2 MW (R7) < 161
1.18 < X3 t1 (R8)
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mainly due to a poorly designed set of compounds, since
the study undertaken did not follow strict design
criteria. Such criteria were used in order to extract less
unbalanced subsets from the available structures, but
as stated earlier, we knew that all information neces-
sary for making sound and reliable predictions outside
the explored domain had not been collected. Conse-
quently, this work once again demonstrates the need
for a properly designed selection of informative structure
for any QSAR study.
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